

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

6 JUNE 2006

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Tuesday

Core Mathematics 1

4721

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying . larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 3 printed pages and 1 blank page.

© OCR 2006 [Y/102/2693]

Registered Charity Number: 1066969

[Turn over

1 The points A (1, 3) and B (4, 21) lie on the curve $y = x^2 + x + 1$.

- (i) Find the gradient of the line AB. [2]
- (ii) Find the gradient of the curve $y = x^2 + x + 1$ at the point where x = 3. [2]

2 (i) Evaluate
$$27^{-\frac{2}{3}}$$
. [2]

(ii) Express $5\sqrt{5}$ in the form 5^n . [1]

(iii) Express
$$\frac{1-\sqrt{5}}{3+\sqrt{5}}$$
 in the form $a + b\sqrt{5}$. [3]

- 3 (i) Express $2x^2 + 12x + 13$ in the form $a(x+b)^2 + c$. [4]
 - (ii) Solve $2x^2 + 12x + 13 = 0$, giving your answers in simplified surd form. [3]
- 4 (i) By expanding the brackets, show that

$$(x-4)(x-3)(x+1) = x^3 - 6x^2 + 5x + 12.$$
 [3]

(ii) Sketch the curve

$$y = x^3 - 6x^2 + 5x + 12,$$

giving the coordinates of the points where the curve meets the axes. Label the curve C_1 . [3]

(iii) On the same diagram as in part (ii), sketch the curve

$$y = -x^3 + 6x^2 - 5x - 12.$$

[2]

Label this curve C_2 .

5 Solve the inequalities

(i)
$$1 < 4x - 9 < 5$$
, [3]

(ii)
$$y^2 \ge 4y + 5$$
. [5]

6 (i) Solve the equation $x^4 - 10x^2 + 25 = 0.$ [4]

(ii) Given that
$$y = \frac{2}{5}x^5 - \frac{20}{3}x^3 + 50x + 3$$
, find $\frac{dy}{dx}$. [2]

(iii) Hence find the number of stationary points on the curve $y = \frac{2}{5}x^5 - \frac{20}{3}x^3 + 50x + 3$. [2]

7 (i) Solve the simultaneous equations

$$y = x^2 - 5x + 4, \qquad y = x - 1.$$
 [4]

[4]

- (ii) State the number of points of intersection of the curve $y = x^2 5x + 4$ and the line y = x 1. [1]
- (iii) Find the value of c for which the line y = x + c is a tangent to the curve $y = x^2 5x + 4$. [4]
- 8 A cuboid has a volume of 8 m^3 . The base of the cuboid is square with sides of length x metres. The surface area of the cuboid is $A \text{ m}^2$.
 - (i) Show that $A = 2x^2 + \frac{32}{x}$. [3]
 - (ii) Find $\frac{dA}{dx}$. [3]

(iii) Find the value of x which gives the smallest surface area of the cuboid, justifying your answer.

9 The points A and B have coordinates (4, -2) and (10, 6) respectively. C is the mid-point of AB. Find

(i) the coordinates of C,
(ii) the length of AC,
(iii) the equation of the circle that has AB as a diameter,
(iii) the equation of the tangent to the circle in part (iii) at the point A, giving your answer in the form ax + by = c.

4721

1	(i)	$\frac{21-3}{4-1} = \frac{18}{3} = 6$	M1		Uses $\frac{y_2 - y_1}{x_2 - x_1}$
			A1	2	6 (not left as $\frac{18}{3}$)
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 1$	B1		
		$2 \times 3 + 1 = 7$	B1	2	
2	(i)	$27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{9}$	M1		$\frac{1}{27^{\frac{2}{3}}}$ or $27^{\frac{2}{3}} = 9$ or 3^{-2} soi
			A1	2	$\frac{1}{9}$
	(ii)	$5\sqrt{5} = 5^{\frac{3}{2}}$	B1	1	
	(iii)	$\frac{1-\sqrt{5}}{3+\sqrt{5}} = \frac{\left(1-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}$	M1		Multiply numerator and denominator by conjugate
		$=\frac{8-4\sqrt{5}}{4}$	B1		$\left(\sqrt{5}\right)^2 = 5$ soi $2 - \sqrt{5}$
		$=2-\sqrt{5}$	A1	3	$2-\sqrt{5}$
3	(i)	$2x^{2} + 12x + 13 = 2(x^{2} + 6x) + 13$ $= 2[(x + 3)^{2} - 9] + 13$	B1 B1 M1		a = 2 b = 3 $13 - 2b^2$ or $13 - b^2$ or $\frac{13}{2} - b^2$ (their b)
		$=2(x+3)^2-5$	A1	4	<i>c</i> = –5
	(ii)	$2(x+3)^2 - 5 = 0$	M1		Uses correct quadratic formula or completing square method
		$2(x+3)^{2} - 5 = 0$ (x+3) ² = $\frac{5}{2}$ x = $-3 \pm \sqrt{\frac{5}{2}}$	A1		$x = \frac{-12 \pm \sqrt{40}}{4}$ or $(x+3)^2 = \frac{5}{2}$
		$x = -3 \pm \sqrt{\frac{3}{2}}$	A1	3	$x = -3 \pm \sqrt{\frac{5}{2}}$ or $-3 \pm \frac{1}{2}\sqrt{10}$

4	(i)	(x-4)(x-3)(x+1)	B1		$x^{2} - 7x + 12$ or $x^{2} - 2x - 3$ or $x^{2} - 3x - 4$ seen
		$\equiv (x^2 - 7x + 12)(x + 1)$ $\equiv x^3 + x^2 - 7x^2 - 7x + 12x + 12$	M1		Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term expansion
		$\equiv x^3 - 6x^2 + 5x + 12$	A1	3	of all 3 brackets $x^3 - 6x^2 + 5x + 12$ (AG) obtained (no wrong working seen)
	(ii) (iii)		B1		+ve cubic with 3 roots (not 3 line segments)
	(111)		B1		(0, 12) labelled or indicated on y-axis
			B1	3	(-1, 0), (3,0), (4, 0) labelled or indicated on <i>x</i> -axis
		C2	M1		Reflect <i>their</i> (ii) in either <i>x</i> - or <i>y</i> -axis
			A1√	2	Reflect <i>their</i> (ii) in <i>x</i> -axis
5	(i)	1 < 4x - 9 < 5 10 < 4x < 14	M1		2 equations or inequalities both dealing with all 3 terms
		2.5 < x < 3.5	A1		2.5 and 3.5 seen oe
			A1	3	2.5 < x < 3.5 (or 'x > 2.5 and x < 3.5')
	(ii)	$y^2 \ge 4y + 5$	B1		$y^2 - 4y - 5 = 0 \text{soi}$
		$y^2 - 4y - 5 \ge 0$	M1		Correct method to solve quadratic
		$(y-5)(y+1) \ge 0$ $y \le -1, y \ge 5$	A1		-1, 5 (SR If both values obtained from trial and improvement, award B3)
			M1		Correct method to solve inequality
			A1	5	$y \leq -1, y \geq 5$

	(4 2			Г
6	(i)	$x^4 - 10x^2 + 25 = 0$ Let $y = x^2$	*M1		Use a substitution to obtain a quadratic or $(x^2 - 5)(x^2 - 5) = 0$
		$y^2 - 10y + 25 = 0$			or $(x - 5)(x - 5) = 0$
		$(y-5)^2 = 0$	dep*M1		Correct method to solve a quadratic
		y = 5	A1		5 (not $x = 5$ with no subsequent working)
		$x^2 = 5$. /-
		$x = \pm \sqrt{5}$	A1	4	$x = \pm \sqrt{5}$
	(ii)	$y = \frac{2x^5}{5} - \frac{20x^3}{3} + 50x + 3$	B1		$2x^4$ or $-20x^2$ oe seen
		5 5	B1	2	$2x^4 - 20x^2 + 50$ (integers required)
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^4 - 20x^2 + 50$	ы	2	
	(iii)	$2x^4 - 20x^2 + 50 = 0$	M1		their $\frac{dy}{dx} = 0$ seen (or implied by correct
		$x^4 - 10x^2 + 25 = 0$	IVII		dx answer)
		which has 2 roots	A1	2	2 stationary points www in any part
7	(i)	$y = x^2 - 5x + 4$			
		y = x - 1			
		$x^2 - 5x + 4 = x - 1$	M1		Substitute to find an equation in x (or y)
		$x^2 - 6x + 5 = 0$	M1		Correct method to solve quadratic
		(x-1)(x-5) = 0	A1		<i>x</i> = 1, 5
		x = 1 x = 5 $y = 0 y = 4$	A1	4	y = 0, 4 (N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part (ii))
					SR one correct (x, y) pair www B1
	(ii)	2 points of intersection	B1	1	
	(iii)	EITHER $x^2 - 5x + 4 = x + c$ has 1 solution	M1		$x^2 - 5x + 4 = x + c$ has 1 soln seen or
		$x^{2} - 6x + (4 - c) = 0$ $b^{2} - 4ac = 0$	M1		implied Discriminant = 0 or $(x-a)^2 = 0$ soi
		$b^{-} - 4ac = 0$ 36 - 4(4 - c) = 0	A1		36 - 4(4 - c) = 0 or $9 = 4 - c$
		c = -5	Al	4	36-4(4-c) = 0 or $9 = 4-cc = -5$
		OR			
		$\frac{dy}{dx} = 1 = 2x - 5$	M1		Algebraic expression for gradient of curve =
		$\begin{array}{l} x \\ x = 3 y = -2 \end{array}$			non-zero gradient of line used
		-2 = 3 + c	A1		2x - 5 = 1
		<i>c</i> = -5	A1		<i>x</i> = 3
			A1 A1	4	c = -5
					SR $c = -5$ without any working B1
I			ı	i	······································

8	(i)	Height of box = $\frac{8}{x^2}$	*B1		Area of 1 vertical face = $\frac{8}{x^2} \times x$
		4 vertical faces = $4 \times \frac{8}{x}$ = $\frac{32}{x}$	*B1		$=\frac{8}{x}$
		Total surface area = $x^2 + x^2 + \frac{32}{x}$	B1 dep on both **		Correct final expression
		$A = 2x^2 + \frac{32}{x}$		3	
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4x - \frac{32}{x^2}$	B1 B1 B1	3	$ 4x \\ kx^{-2} \\ -32x^{-2} $
	(iii)	$4x - \frac{32}{x^2} = 0$ $4x^3 = 32$	M1		$\frac{\mathrm{d}A}{\mathrm{d}x} = 0$ soi
		$4x^3 = 32$ $x = 2$	A1		x = 2
			M1 A1	4	Check for minimum Correctly justified
					SR If $x = 2$ stated www but with no evidence of differentiated expression(s) having been used in part (iii) B1

0	(1	
9	(i)	$\left(\frac{4+10}{2}, \frac{-2+6}{2}\right)$	M1		Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
		(7, 2)	A1	2	(7, 2) (integers required)
	(ii)	$\sqrt{(7-4)^{2} + (2-2)^{2}}$ $= \sqrt{3^{2} + 4^{2}}$	M1		Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		$=\sqrt{3^2+4^2}$ $=5$	A1	2	5
	(iii)	$(x-7)^{2} + (y-2)^{2} = 25$	В1√		$(x-7)^2$ and $(y-2)^2$ used (<i>their</i> centre)
			B1√		$r^2 = 25$ used (their r^2)
			B1	3	$(x-7)^{2} + (y-2)^{2} = 25$ cao
					Expanded form: -14x and -4y used B1 $$ $r = \sqrt{g^2} + f^2 - c$ used B1 $$ $x^2 + y^2 - 14x - 4y + 28 = 0$ B1 cao
					By using ends of diameter: $(x - 4)(x - 10) + (y + 2)(y - 6) = 0$ Both x brackets correctB1Both y brackets correctB1Final equation fully correctB1
	(iv)	Gradient of $AB = \frac{62}{10 - 4} = \frac{4}{3}$	B1		oe
		Gradient of tangent = $-\frac{3}{4}$	B1√		
			M1		Correct equation of straight line through A,
		$y - 2 = -\frac{3}{4}(x - 4)$	A1		any non-zero gradient
		$y - 2 = -\frac{3}{4}(x - 4)$ 3x + 4y = 4	A1	5	<i>a</i> , <i>b</i> , <i>c</i> need not be integers